Voice conversion based on RBF neural network
نویسنده
چکیده
Recently, voice conversion has becoming the research hotspot, because of its widely application areas. However, the voice conversion technology is still immature. By the researching of existing voice conversion models, the voice conversion system based on the RBF neutral network was designed, and the system simulation was implemented. During conversion, the unvoiced speech was excluded and the voiced speech was reserved. The LPC was the extracted from the source and target speech, then convert the LPC to LSP. The LPS was trained by RBF neural network after time-aligned. Obtained mapping function was used to convert the source LSP to target LSP, and synthesis the speech. Finally, the converted speech evaluated by ABX and MOS to test the tendency and quality of the speech.
منابع مشابه
Voice conversion using General Regression Neural Network
The objective of voice conversion system is to formulate the mapping function which can transform the source speaker characteristics to that of the target speaker. In this paper, we propose the General Regression Neural Network (GRNN) based model for voice conversion. It is a single pass learning network that makes the training procedure fast and comparatively less time consuming. The proposed ...
متن کاملDetermination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models
In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...
متن کاملTransformation of spectral envelope for voice conversion based on radial basis function networks
This paper presents a novel algorithm that modifies the speech uttered by a source speaker to sound as if produced by a target speaker. In particular, we address the issue of transformation of the vocal tract characteristics from one speaker to another. The approach is based on estimating spectral envelopes using radial basis function (RBF) networks, which is one of the well-known models of art...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملGENERATION OF MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE ACCELEGRAMS WITH HARTLEY TRANSFORM AND RBF NEURAL NETWORK
The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017